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Abstract. UEGO is a general clustering technique capable of accelerating and/or parallelizing ex-
isting search methods.UEGO is an abstraction ofGAS, a genetic algorithm (GA) with subpopulation
support, so the niching (i.e. clustering) technique ofGAS can be applied along with any kind of
optimizers, not only genetic algorithm. The aim of this paper is to analyze the behavior of the
algorithm as a function of different parameter settings and types of functions and to examine its
reliability with the help of Csendes’ method. Comparisons to other methods are also presented.
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1. Introduction

UEGO stands forUniversal Evolutionary Global Optimizer. Though this method is
not ’evolutionary’ in the usual sense, we have kept the name for historical reasons.
The predecessor ofUEGO wasGAS, a steady-state genetic algorithm with subpop-
ulation support.GAS offers a solution to the so-called niche radius problem which
is a common problem of many simple niching techniques such asfitness sharing
(Deb, 1989; Deb and Goldberg, 1989),simple iterationor thesequential niching
Beasley et al. (1993). This problem is related to functions with multiple locals that
are unevenly spread throughout the search space. The solution ofGAS involves a
’cooling’ technique, which enables the search to focus on the promising regions
of the space, starting off with a relatively large radius that decreases as the search
proceeds. In multimodal optimization problems where the objective function has
multiple local optima it may be useful to ensure that the optimizer does not waste
its time exploring the same region several times and is able to visit new promising
regions where an optimum may exist. This goal can be achieved by applying a non-
overlapping set of clusters which define sub-domains for the applied optimizer.
Based on the results of the optimizer, the search process can be directed towards
smaller regions by creating a new set of non-overlapping clusters that consists of
smaller sub-domains. This process is a kind of cooling method similar to simulated
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Figure 1. Concept of species.

annealing. A particular cluster is not a fixed part of the search domain; it can move
through the space as the search proceeds. The non-overlapping property of the
set of clusters is maintained however. For more details onGAS the reader should
consult Jelasity and Dombi (1998).

In Jelasity (1998) an introduction to the history, motivation behind developing
UEGO and its evaluation for a combinatorial problem is given. The common part
of UEGO with GAS is thecluster-management(or species creation ) mechanism
and thecooling method. However, thespecies creationand cooling mechanism
has been logically separated from the actual optimization algorithm, so it is pos-
sible to implement any kind of optimizers that work ‘inside a species’. This allows
the adaptation of the method to a large number of possible search domains using
existing domain specific optimizers while enjoying the advantages of the oldGAS-
style subpopulation approach. In this paper, an algorithm calledSASS, proposed by
Solis and Wets Solis and Wets (1981), has been used as the optimizer algorithm.

The paper is organized as follows: Section 2 contains a short description of
UEGO, the optimization algorithm; Section 3 presents the methodology that has
been used to analyze the performance ofUEGO with respect to its user-given para-
meters, and hence, a robust parameter setting can be presented. Section 4 is devoted
to testing the reliability ofUEGO using a robust parameter setting. Section 5 shows
comparisons to other methods. Finally, in Section 6, the performance ofUEGO is
tested using a wide set of known test functions.

2. Description of UEGO

In this section the basic concepts, the algorithm, and the setting of the parameters
are outlined. InUEGO, a domain specific optimizer (i.e.SASS) has to be implemen-
ted. Wherever we refer to ‘the optimizer’ in the paper we mean this optimizer.

2.1. BASIC CONCEPTS

A key notion in UEGO is that of aspecies. A species would be equivalent to an
individual in a usual evolutionary algorithm. A species can be thought of as a
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Figure 2. Radius values for the levels based on an exponentially decreasing function.

window (sphere) on the whole search space (see Figure 1). This window is defined
by its centerand aradius. The center is a solution, and the radius is a positive
number. Of course, this definition assumes adistancedefined over the search space.
The role of this window is to ‘localize’ the optimizer that is always called by a
species and can ‘see’ only its window, so every new sample is taken from there.
This means that any single step made by the optimizer in a given species is no
larger than the radius of the given species. If the value of a new solution is better
than that of the old center, the new solution becomes the center and the window is
moved while it keeps the same radius value.

The radius of a species is not arbitrary; it is taken from a list of decreasing radii,
the radius list that follows acooling schedule (see Figure 2), in such a way
that given the smallest radius and the largest one (rl andr1) the remaining radii are
expressed by the exponential function

ri = r1
(
rl

r1

) i−1
l−1

(i = 2, . . . , l). (1)

The first element of this list is always the diameter of the search space. If the radius
of a species is theith element of the list, then we say that thelevelof the species is
i.

The parameterlevels indicates the maximal number of levels in the algorithm,
i.e. the number of different ‘cooling’ stages. Every leveli (i.e. for levels from
[1,levels]) has a radius value (r i) and two maxima on the number of function
evaluations (f.e.) namelynewi (maximum f.e. allowed when creating new species)
andni (maximum f.e. allowed when optimizing individual species).

During the optimization process, a list of species is kept byUEGO. This concept,
species-list, would be equivalent to the termpopulation in an evolutionary al-
gorithm. UEGO is in fact a method for managing thisspecies-list(i.e. creating,
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deleting and optimizing species). The maximal length of the species list is given
by max_spec_num(maximum population size).

2.2. THE ALGORITHM

The UEGO algorithm for maximizing a multimodal function has the following
structure:

Begin UEGO

init_species_list
optimize_species(n1)
for i = 2 to levels

Determineri , newi, ni
create_species(newi /length(species_list))
fuse_species(ri )
shorten_species_list(max_spec_num)
optimize_species(ni /max_spec_num)
fuse_species(ri )

end for
End UEGO

Init_species_list:
A new species list consisting of one species with a random center at level 1 is

created.
Create_species (evals):For every species in the list, random trial points in the

‘window’ of the species are created, and for every pair of trial points the objective
function is evaluated at the middle of thesectionconnecting the pair (see Figure 3).
If the objective function value of the middle is worse than the values of the pair,
then the members of the pair are inserted in the species list. Every newly inserted
species is assigned the actual level value (i). As a result of this procedure the species
list will eventually contain several species with different levels (hence different
radii). The motivation behind this method is to create species that are on different
‘hills’ so ensuring that there is a valley between the new species. For unimodal
problems members are never added to the species list so a single species is main-
tained. The parameter of this procedure (evals) is an upper bound of the number
of function evaluations. Note that this algorithm needs a definition of section in
the search space. In terms of genetic algorithms, it could be thought that, in this
procedure, a single parent (species) is used to generate offspring (new species),
and all parents are involved in the procedure of generating offspring.

Fuse_species (radius):If the centers of any pair of species from the species
list are closer to each other than the given radius, the two species are fused (see
Figure 4). The center of the new species will be the one with the better function
value while the level will be the minimum of the levels of the original species (so
the radius will be the larger one).



RELIABILITY AND PERFORMANCE OF UEGO 269

PA PBMAB

if middle point is worse, then separate PA & PB 

new species

C1 r1

C2 r2

Cn rn

M1AB

M1AC

M....

Initial  species-list
at level i

For ever member do

generate random points

check middle points
C1 r1

C2 r2

Cn rn

P1A ri

P1B ri

Final species-list at
level i

added on

level i

P1A

P1B

P1C

P1D

P1E

P2A

P2B

P2C

M2AB

M2AC

C3

x
x

x

x
x

C4

x
x

x
x

x

C2

x

x

x

x

C1

x

x x

x

x

M1ABP1A
P1B

Figure 3. Creation procedure.

center
radius

to highest point  (C1)
to largest radius  (r2)

C1C1 C2

r2r2
r1

Figure 4. Fusion procedure.

Shorten_species_list(max_spec_num):It deletes species to reduce the list
length to the given value. Higher level species are deleted first, therefore species
with bigger radii are always kept. For this reason one species at level 1 whose radius
is equal to the diameter of the search domain always exists, making it possible
to escape from local optima. In the implementation used in the paper no special
method is applied for selecting the species to delete, except the above constraint.

Optimize_species(budget_per_species):Execute the optimizer (in this paper:
SASS) for every species with a given number of evaluations (budget_per_species)
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(see Figure 1). At leveli the budget_per_species isni/max_spec_num, so this
budget depends on themax_spec_num (maximum species number or maximum
population size).

It is clear that if for some leveli the species list is shorter than the allowed
maximal length,max_spec_num, the overall number of function evaluations will
be smaller thanni. Therefore the number of function evaluations tends to decrease
as max_spec_numincreases whenever the number of found species is smaller
than this maximal length. Genetic algorithms (even forGAS) typically run until a
maximum number of function evaluations has been computed whereasUEGO may
terminate before this limit has been reached simply because it has executed all of
its levels.

2.3. PARAMETERS OF UEGO

In UEGOthe most important parameters are those defined at each level: the radii (ri)
and the function evaluations numbers for species creation (newi) and optimization
(ni). These parameters are computed from some user-given parameters that are
easier to understand:

evals (N): The maximal number of function evaluations the user allows for the
whole optimization process. It could be called asWhole Budget. Note that the
actual number of function evaluations may be less than this value.

levels (l): The maximum number of levels, i.e. the number of cooling stages.
max_spec_num(M): The maximum length of the species list or the maximum

allowed population size.
min_r (rl): The radius that is associated with the maximum level, i.e.levels.

Discussing the algorithm for computing the parameters from these user given
values in detail are out of the scope of this paper. The reader should consult Jelasity
(1998) to understand the justification of the following equations. The basic idea
is that species move in the space at a givenspeed(v(r)) (distance per function
evaluations) which depends on the applied search algorithm and the level of the
given species. Thespeedin a leveli can be computed as:

v(ri) =

(
n
n−1

2

)
2n+1

· ri (i = 2, . . . , l) (2)

Using this notion, we make sure that even when the length of the species list is
maximal, the species at different levels can explore the same volume of the search
space.

In the creation mechanism it must be ensured that even if the length of species
list is maximal, there is a chance of creating at least two more species for each old
species. It also makes a strong simplification that all the evaluations should be set
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to the same constant value. Equation 3 shows hownewi is computed.

newi = 3M (i = 2, . . . , l) (3)

The number of function evaluations in the optimization processni at every level
i can be expressed by Equation 4, whereν is a threshold that directly controls the
distance a species is allowed to cover.

ni = r1νM

v(ri)
(i = 2, . . . , l) (4)

Let us definenew1 = 0 for the sake of simplicity sincenew1 is never used by
UEGO. The decomposition ofN results in the trivial equation

l∑
i=1

newi +
l∑
i=1

ni = (l − 1)3M +
l∑
i=2

r1νM

v(ri)
= N. (5)

From ( 4) and (5) parametersν andni can be computed.

3. Testing Experiment Settings

In this section, experimental results on real functions will be presented. For real
functions the optimizer used byUEGO was the derivative-free and stochastic hill
climber suggested in Solis and Wets (1981) (SASS), where the parameterρub, that
controls the maximum step size was set to the value of the radius of the species
from which the optimizer is called; and the accuracy of the search was set to
min(ρub/103,10−5). No fine-tuning of the parameters of the optimizer was done.

Due to the stochastic nature ofUEGO, all the numerical results given in this
work are average values of hundred executions.

Our experimental methodology (see Figure 5) can be split into two stages: the
first stage of training is intended to determine the values of the free parameters of
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Table 1. Type and number of maxima of the four test functions

Y1 Y2 Y3 Y4

Type [0,1]2→ R [0, 1]2→ R [0,1]30→ R [0,1]30→ R

# Optima 5 125 5 125

Figure 6. The plot of the test functions Y1 and Y2.

UEGO which produce good solutions (Section 3); the second stage of testing has
been designed for comparingUEGOto other methods (Section 5) and for evaluating
UEGO with a set of known test functions (Section 6).

3.1. CHARACTERISTICS OF TRAININGTEST FUNCTIONS

The first stage of experiments has been carried out on a set of four different test
functions (Y1, Y2, Y3, Y4). The main characteristics of these functions (dimension
and number of maxima) are described in Table 1.

We decided not to use well-known benchmark functions in this stage of ex-
periments. The main reason is that we agree with the ideas discussed in Hooker
(1995), namely that for doing scientific tests it is more convenient to use functions
that differ only in controllable features. This will allow us to analyze the effect of
only one separated feature of the test problem: the number of local optimaK and
the dimensionn of the function.

The construction of these functions starts with a user-given list of local optimum
sites (o) and the corresponding function values (fo), which must be positive values.

In the first step, we define bell shapes for every site to create the local optima.
The height of a bell is given by the function valuefo of its siteo, and its radiusr
is the distance fromo to the closest site. The height of the bell at a distancex from
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Table 2. Values of theUEGOparameters

Levels (l) max_spec_num (M) min_r (rl)

2, 5, 10 5, 20, 50, 200 0.8, 0.5, 0.3, 0.1, 0.03

o is fog(x) where

g(x) =


1− 2x2

r2
if x <

r

2
2(x − r)2

r2
if
r

2
6 x < r

0 otherwise

The value of the objective function at any location is the sum of these bells. In
the case of our test functions, the coordinates of the maximum sites and function
values were randomly taken from[0,1] using a uniform distribution. We made the
random choice of the maximum sites taking in account that the distance among
them should be greater than 0.04. Examples of such functions (Y1,Y2) have been
drawn in Figure 6.

3.2. THE EXPERIMENTS

For the purpose of analyzing the effects of the parameterslevels, max_spec_num
andmin_r , a set of experiments using the four training test functions were made.
The values of these parameters are shown in Table 2. Experiments were performed
for all combinations of these parameter settings. Some results are shown in Tables 3,
. . . , 6 that are average values over 100 runs.

Results in Tables 3 and 4 go with the experiments with the fixed value ofevals
(N) equal to 100,000. In this table, first column shows the values of the parameter
max_spec_num(M), and second column shows the values of minimum radius (rl)
for each value ofM. First row shows the values of the parameterlevels(l). For each
combination ofM, rl andl, the values of two performance measures are indicated:
the average number of function evaluationsUEGO uses whenN = 100,000 (FE),
and the average number of maxima (species)UEGO detects (S). The number of
maxima is computed as the number of species existing at the end ofUEGO. If 100%
of success in finding the global solution is not reached using a certain combination
of parameters, then the corresponding FE value is an∗. A success happens when
f̂ > f ∗−ε, wheref̂ is the value of the objective function for the found maximum,
f ∗ is the maximum value of the objective function andε = 10−6.

Table 3 shows some results for Y1 test function, which is two-dimensional
(n = 2) and it only has 5 optima (K = 5). In this table it can be seen that for
a fixed value ofM and l, the number of detected species (S) increases when the
radius (rl) decreases. This growth in the number of species lies in the fact that the
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Table 3. Results for Y1 (n= 2, K = 5)

l = 2 l = 5 l = 10

M rl FE S FE S FE S

0.80 6,301 1.0 12,154 1.0 14,054 1.0

0.50 6,497 2.9 11,969 2.7 14,473 2.5

5 0.30 6,669 2.9 13,412 3.0 16,055 3.0

0.10 6,732 2.7 16,184 3.0 18,950 3.1

0.03 6,322 2.6 17,594 3.2 20,010 3.4

0.80 2,131 1.0 3,907 1.0 4,836 1.0

0.50 2,501 2.6 4,310 2.5 5,516 2.3

20 0.30 2,723 3.0 5,094 3.0 6,448 2.9

0.10 5,186 4.2 9,115 4.2 12,447 4.3

0.03 5,155 4.6 11,516 4.9 16,453 5.0

0.80 1,191 1.0 2,256 1.0 3,237 1.0

0.50 1,510 2.6 2,707 2.5 3,915 2.4

50 0.30 1,872 3.0 3,258 3.0 4,725 3.0

0.10 5,845 4.5 6,906 4.3 9,498 4.1

0.03 9,054 5.0 10,191 4.9 12,282 5.0

0.80 827 1.0 2,477 1.0 4,979 1.0

0.50 1,128 2.5 2,885 2.6 5,178 2.6

200 0.30 1,414 3.0 3,189 2.9 5,504 3.0

0.10 5,177 4.6 5,882 4.3 8,330 4.6

0.03 8,636 4.9 7,743 5.0 10,705 5.0

number of fused species decreases when the radii are smaller. Since each species
had been assigned a certain maximum number of function evaluations (budget per
species) in the optimization processes, the more species there are, the more func-
tion evaluations are consumed. Consequently, the number of function evaluations
FE also increases when the radius decreases.

For Table 3 under consideration and for fixed values ofl andrl, a tendency to
find more species (S) whenM increases can be appreciated. This tendency is not
too clear due to the fact that Y1 test function only has 5 optima. This increment in
the number of found species can be explained by the fact that a larger population
size is allowed and hence, it results easier to explore the search space. However, for
those fixed parameters, the number of function evaluations (FE) decreases whenM

increases owing to the decrease in the budget per species (ni/M) in the optimiz-
ation processes and to the fact that the number of species remains small for this
test function. It is clear that this effect is not a linear function ofM, and it can be
seen clearer betweenM = 5 andM = 20. IncreasingM further does not show
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Table 4. Results for Y2 (n= 2, K = 125)

l = 2 l = 5 l = 10

M rl FE S FE S FE S

0.80 12,820 1.0 44,457 1.0 57,730 1.1

0.50 13,231 2.6 38,917 2.6 50,499 2.6

5 0.30 12,677 3.7 36,745 3.8 49,529 3.9

0.10 ∗ 3.8 37,517 3.9 51,590 4.0

0.03 ∗ 3.9 49,064 4.0 74,609 4.0

0.80 ∗ 1.0 15,147 1.0 19,628 1.1

0.50 ∗ 2.4 14,074 2.4 18,499 2.6

20 0.30 ∗ 6.3 14,754 6.2 20,639 6.2

0.10 ∗ 14 21,224 14 31,548 15

0.03 ∗ 16 29,911 16 42,630 18

0.80 ∗ 1.0 ∗ 1.0 10,384 1.1

0.50 ∗ 1.0 ∗ 2.3 10,308 2.5

50 0.30 ∗ 1.0 ∗ 6.8 12,315 6.1

0.10 10,138 23 18,424 23 26,458 24

0.03 10,399 34 27,197 35 40,977 38

0.80 ∗ 1.0 ∗ 1.2 6,632 1.2

0.50 ∗ 2.1 ∗ 2.1 6,855 2.1

200 0.30 ∗ 5.7 ∗ 5.9 8,692 5.9

0.10 7,873 21 13,629 24 20,628 23

0.03 17,909 55 39,510 62 49,338 64

the effect onS sinceM = 20 is already sufficient due to the small number of local
optima.

Results in Table 4 for Y2 test function, which is two dimensional (n = 2) and it
has 125 optima (K = 125), show that the tendencies in the performance ofUEGO

with respect to the parametersM, rl and l are similar to the tendencies analyzed
for Y1 test function.

Accordingly with the tendencies shown for Y1 in Table 3, the number of detec-
ted species (S) increases whenM andl increase andrl decreases. In the same way,
the number of function evaluations (FE) increases whenl increases andM andrl
decrease.

Y2 is a more difficult test function than Y1, in such a way that for some combin-
ations of the parameters,UEGO is not able to find the global solution with 100% of
success. The symbol∗ in Table 4 indicates that for the corresponding combination
of parametersUEGO does not reach the global optimum with 100% of success. The
results in Table 4 show thatUEGO did not get trapped in local optima only when
the number of levels is high (l= 10), following that the cooling process allows the



276 PILAR M. ORTIGOSA ET AL.

Table 5. Results for Y3 (n= 30, K = 5)

l = 2 l = 5 l = 10

M rl FE S FE S FE S

0.80 397,208 2.5 406,303 3.2 407,825 3.6

0.50 397,154 2.6 406,928 3.3 407,631 3.6

5 0.30 396,184 2.7 407,118 3.2 408,608 3.6

0.10 396,074 2.7 407,542 3.4 409,258 3.7

0.03 396,070 2.6 407,375 3.3 409,550 3.6

0.80 124,145 4.2 122,147 4.0 119,658 3.9

0.50 124,050 4.2 123,929 4.0 123,904 4.1

20 0.30 124,292 4.2 124,583 4.0 124,684 4.1

0.10 124,493 4.2 125,214 4.2 125,598 4.2

0.03 124,158 4.2 124,221 4.1 126,039 4.1

0.80 83,600 4.4 51,074 3.5 52,176 3.6

0.50 80,965 4.3 53,966 3.8 54,322 3.5

50 0.30 85,077 4.4 54,080 3.7 54,584 2.7

0.10 84,694 4.4 54,166 3.8 53,902 3.7

0.03 86,666 4.7 55,363 3.8 53,347 3.6

0.80 25,074 3.7 18,441 2.8 21,130 2.9

0.50 26,237 3.7 18,437 2.6 20,873 2.9

200 0.30 25,640 3.7 18,877 2.8 ∗ 2.9

0.10 27,273 3.7 ∗ 2.9 ∗ 2.9

0.03 24,505 3.8 ∗ 3.3 ∗ 3.8

algorithm to escape from local optima. When the number of levels is small (l = 2),
the algorithm can find the global optimum with 100% of success either whenM is
small andrl is big or whenM is big andrl is small (the large amount of allowed
species cover most of the search space, detecting the global attraction area).

Function Y3 has only 5 optima (K = 5), but it is defined in a 30-dimensional
domain space (n = 30), a characteristic that increases the difficulty of locating
the maxima, in such a way thatUEGO could not find the global solution with
100% of success for any combination of parameters. In several cases, the algorithm
could find the global maximum attraction region, but it was not able to reach the
maximum position with enough precision. For these reasons we tried to run the
algorithm with a larger value of the maximum number of function evaluations,
i.e. N = 1,000,000. Table 5 shows some results for these new experiments.
Nevertheless, it can be seen that 100% of success in finding the global maximum
was not reached for large values ofM (M = 200), where the number of function
evaluations is quite small. This fact happens because whenM increases, the budget
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Table 6. Results for Y4 (n=30,K=125). Parameters:M=50,N=20,000,000

l = 2 l = 5 l = 10

rl FE S % FE S % FE S %

0.80 420,625 33.3 94 474,177 34.9 94 468,973 35.1 88

0.50 422,896 34.4 94 474,322 35.3 94 479,947 36.7 87

0.30 420,084 34.5 89 477,121 36.7 88 483,702 39.1 94

0.10 423,259 35.4 80 472,516 39.6 96 486,743 40.1 98

0.03 420,875 36.7 78 473,898 40.8 100 495,103 42.2 100

per species in the optimization process (ni/M) decreases; and this small number of
points the optimizer is allowed to evaluate is not enough in a 30-dimensional space.
These difficulties ofUEGO in finding the global maximum with enough precision
would be mainly due to the fact that we are using a rather inefficient local search
procedure that does not converge very well in high dimensions. Therefore better
results could be achieved if a faster local search optimizer were used.

It is interesting to point out that, as can be seen in Table 5, the average number
of detected species (S) and the average number of function evaluations (FE) hardly
change with the value of the parameterrl . This result can be put down to the rel-
atively far distance among the locations of the maxima in a 30-dimensional space,
allowing the detection of the same number of species using different radii values.
In other words, shrinking the radius size the way done in the experiments did not
result in decreasing the number of detected species. To achieve this effect the radius
should have been decreased much steeper. However for a clearer comparison we
used the same values in every experiment.

Another similar effect with respect to the number of consumed function evalu-
ations can be appreciated for differentlevelsvalues. Taking into account that for
Y3 it is quite hard to detect the positions of the maxima, the optimizer consumes
the whole budget per species it has been assigned (ni/M).

Test function Y4 (30-dimensional with 125 optima) has both a large number
of maxima and high dimensionality. Consequently 100% of success in finding the
global optimum was not reached forN 6 1,000,000. Therefore, experiments
for Y4 test function were run for the parametersM andN fixed toM = 50 and
N = 20,000,000. From these experiments the effects of the number of levelsl

and minimum radiusrl were analyzed. Table 6 illustrates the average results from
those experiments, where FE indicates the average number of consumed function
evaluations, S the average number of found optima (species), and % the percentage
of success in reaching the global optimum.

Results in Table 6 show that the number of optima the algorithm is able to find
increases when the minimum radius decreases and the number of levels increases. It
can be seen that the number of function evaluations also increases with the number
of found species; though this increment is not too high as happened for Y3 test



278 PILAR M. ORTIGOSA ET AL.

function. It is interesting to remark that the largest percentage of success is achieved
for higher number of levels and smaller radii, as happened for Y2 test function. In
this way, it can be seen that forl = 2, the percentage of success decreases whenrl
decreases due to the fact that withl = 2 and small radii the algorithm cannot cover
the whole search space and hence, it can get trapped in a local optimum. However,
when the number of levels is high, due to the cooling mechanism, the algorithm is
not trapped in a local optimum, and small final radii allow to obtain more accurate
solutions.

As conclusion of the above experiments it could be said that a robust parameter
setting consists of a large enough number of levels (l), a small minimum radius (rl),
a sufficient maximum number of species (M) and a large value ofN in order to get
a minimum budget per species which is sufficient in the optimization process. An
example of robust parameter setting could be:rl = 0.03, l = 10,M = 50,100
andN = 1,000,000. We have to point out that the optimal values depend on the
problem domain at hand. Based on the above results, after preliminary experiments,
it is possible to fine-tune the parameters. For instance if the number of species
found is small then we can use a smallerM, and a smallerN .

4. Reliability Measurement

In Csendes (1988) a new global optimization test problem is suggested. This prob-
lem can be used for measuring the reliability of a global optimization algorithm and
testing the degree of difficulty of global optimization problems that can be solved
with it.

The suggested n-dimensional test function to be minimized can be described as:

F(x) =
n∑
i=1

fi(xi) (6)

where for everyi = 1,2, . . . , n:

fi(xi) = x6
i (sin(1/xi)+ 2)

if xi 6= 0, and

fi(0) = 0

The functionF(x) has a countable infinity of local minima and maxima and all
these extrema are in the hypercube:

−16 xi 6 1 i = 1,2, . . . , n (7)

In Csendes (1988) it was proved that the region of attraction of the global
minimum is of zero measure. The most important property ofF(x) is that the
smaller the local minimum, the smaller the measure of the region of attraction
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Table 7. Results for a set of test functions.UEGOparameters:N=1,000,000,M=20, l=10 y rl=0.03

n f (x∗) FE S

1 −0.0000000000e+ 00 45,847 1

2 −0.0000000000e+ 00 46,282 1

3 −5.8190367120e− 54 53,901 1

4 −7.4351932756e− 46 62,275 6.3

5 −1.6196189608e− 30 60,175 1.5

6 −6.8963964499e− 28 60,799 2.3

7 −1.9740668478e− 27 57,333 2.9

8 −1.9975941753e− 25 58,032 3.6

9 −1.5502053326e− 23 54,117 4.4

10 −1.5597071749e− 19 56,585 7.6

relating to this local minimum. This feature can be used to assess the degree of
difficulty of global optimization problems that can be solved by the given method.
The local minimizers of the one-dimensional version of the test function can be
ordered according to the magnitude of the function value. The serial numberNx of
the local minimizerx can be calculated using the equation

Nx = 2b|1/x|/2πc − 1+ (sgn(x)− 1)/2 (8)

whereb.c denotes the largest integer not greater than the argument, andsgn stands
for the signum function. In the one-dimensional case the size of the region of
attractionAx of local minimizerx can be well estimated by:

Ax ≈ 2
1
x2 − π2

(9)

whereAx is approximately equal to the distance between the two minima that are
adjacent tox.

4.1. RESULTS FOR THIS TEST FUNCTION DEFINED IN SEVERAL DIMENSIONS

In order to measure the reliability ofUEGO algorithm, the opposite of the above
test function (−F(x); x ∈ [−1,1]n), see Equation (6), in several dimensionsn, has
been maximized. The values of the parameters were:N = 1,000,000,M = 20,
l = 10 y rl = 0.03. All experiments have been executed 100 times, and results
in Table 7 are average values (double precision) of the found maximum (f (x∗)),
the average number of function evaluations (FE), and the average number of de-
tected species (S). In the left hand column dimension of the test problems has been
represented.

The results in Table 7 show that forn = 1 andn = 2 UEGO reaches the real
global maximum equal to 0.0. For the remaining test functions, the differences
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Table 8. Comparison to Csendes algorithm

n Csendes UEGO

1 f (x∗) −0.319144e− 23 −0.000000e+ 00

FE 22, 137 45,847

s.t.u 33.5 61.04

s.t.u./eval 1.51e− 3 1.33e− 3

4 f (x∗) −0.272099e− 8 −7.435193e− 46

FE 22, 137 62,275

s.t.u 46.1 110.09

s.t.u./eval 2.09e− 3 1.77e− 3

between the real maxima and the optima reached byUEGOincrease with the dimen-
sion of the problem, and hence with the complexity of the test problem. However,
the found optima are still quite small. In Csendes (1988), after a reliability test
using these test functions, Csendes concludes that his algorithm can be tuned to
solve most practical problems with satisfying reliability.

Table 8 shows results for Csendes’ andUEGO algorithms for the test functions
with n = 1 and n= 4. The magnitude ‘s.u.t’ stands for standard time unit which
indicates the consumed time in 1000 evaluations of the Shekel 5 function atxT =
(4.0,4.0,4.0,4.0)T . The magnitude s.t.u./eval (s.t.u/number_of_function_evalua-
tions) is a measurement of the speed of the algorithm. Results show thatUEGO

reaches the solution with more accuracy though it needs more function evaluations
and therefore more time. However it can be seen thatUEGO is faster than Csendes’
algorithm in the sense that the values of ‘s.t.u./eval’ are smaller forUEGO for both
test functions.

Thereby, it can be concluded that the algorithm shows a high degree of reliabil-
ity even for quite complex test functions.

5. Comparison to Other Methods

In this set of experiments we wanted to compareUEGO to methods that have been
developed to be used in similar environments. This is the reason why we did not
include domain specific clustering methods in the test, only heuristics that have a
similar general application area. The algorithms we chose are: a simple hillclimber
(SHC), a multistart hillclimber (MHC), GAS and aGA with local search (GENESIS).

Another issue was to choose the problem domain for the comparison. Accord-
ing to a general feeling in the field of global optimization which is supported by
theoretical results as well Wolpert and Macready (1997), every algorithm has its
special area of application, and there is no algorithm that is better than some other
algorithm on every task. Therefore a paper that discusses a new algorithm should
try to characterize the situations in which the algorithm can be expected to perform
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especially well. For this reason we chose a set of functions that can illustrate the
adaptive search focusing capabilities ofUEGO. The functions have a relatively large
flat area with the interesting part located in a small cluster.

5.1. TEST FUNCTION SET

The set of test functions consists of the functions Y1-4 on extended domains,
[0, n]d whered is 2 (for Y1, Y2) or 30 (for Y3, Y4), andn is such that the volume
V of the domain isV = 2j , wherej = 0,1,2,3,4,5,6,7. The function value
outside[0,1]d is the constant value−0.1 which is lower than the minimum of
Y1-4. Therefore the new set of test function consists of the set of the 32 functions:

YiV2j , i = 1,2,3,4, j = 0,1,2,3,4,5,6,7

5.2. PARAMETER SETTING

In this section comparisons with a simple hill climber (SHC), a multistart hill
climber (MHC), GAS (the ancestor ofUEGO) andGENESIS(a GA with local search)
are shown. All results are average results over 50 runs. The maximum number of
function evaluations was set toN = 100,000 for Y1-2, andN = 1,000,000 for
Y3-4, for all algorithms. The remaining parameters of the algorithms were set as
follows.

UEGO algorithm was run using:l = 10,M = 50 andrl = 0.03.
The hill climber (SHC) was the optimizer used byUEGO; it means thatSHC is

UEGO with l = 1.
In the multistart case,MHC, the number of restarts from a new random point

is given by the value ofM for UEGO, i.e. 50. Therefore it consists of 50 runs of
UEGO(l = 1) in such a way thatN is an upper bound of the total number of function
evaluations.

The parameters forGAS are very similar to those ofUEGO, so the minimum
radius was set to 0.03, the population size was set to 200 in such a way that the
maximum number of species ispopulation_size/4= 50 and the number of levels
was set to 8, the maximum allowed by the algorithm.

GENESIS is a GA with local search (see Grefenstette (1990)). We have intro-
duced local optimizerSASSin the algorithm in order to compare similar heuristics.
The number of steps of the local optimizer inGENESISalgorithm was set to 20 ac-
cording to the suggestion of Orvosh and Davis (1993). The parameters ofGENESIS

used in the experiments were: to use gray coding, 30 bit per dimension, mutation
0.01, and ranking elitist selection. The remaining parameters of the algorithm were
set to the default values.
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Table 9. Results of the comparison experiments for Y1

Function UEGO SHC MHC GAS GENESIS

Y1V1 FE 12,282 188 9,447 172,893 100,114

%Succ 100 30 100 100 100

S 4.96 1.0 3.0 4.44 1.0

Y1V2 FE 9,129 186 9,327 159,199 1001,20

%Succ 100 24 100 100 70

S 4.88 1.0 3.0 3.68 1.0

Y1V4 FE 6,226 197 9,861 134,984 100,128

%Succ 96 10 100 100 90

S 4.26 1.0 2.8 2.62 1.0

Y1V8 FE 6,261 191 9,580 145,419 100,260

%Succ 90 14 100 100 50

S 4.06 1.0 2.0 1.96 1.0

Y1V16 FE 5,334 195 9,774 155,817 100,260

%Succ 72 14 100 100 0

S 3.46 1.0 2.0 2.24 1.0

Y1V32 FE 5,323 200 10,027 148,893 100,160

%Succ 64 12 100 100 0

S 2.74 1.0 2.0 1.84 1.0

Y1V64 FE 5,471 216 10,845 135,079 100,360

%Succ 84 20 100 100 0

S 3.52 1.0 2.0 1.72 1.0

Y1V128 FE 5,413 238 11,637 159,366 100,400

%Succ 88 12 100 100 0

S 3.44 1.0 2.0 1.84 1.0

5.3. RESULTS AND DISCUSSION

Results of the experiments for Y1-4 and their extensions are shown in Tables 9, 10,
11 and 12 respectively.

In these tables, first column shows the extension of the function, and second
column shows the performance magnitudes that have been measured in the exper-
iments. Columns third to seventh show the results forUEGO, SHC, MHC, GAS and
GENESISalgorithms.

The SHC algorithm performs very poorly which is not surprising given the
special structure of our domain.
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Table 10.Results of the comparison experiments for Y2

Function UEGO SHC MHC GAS GENESIS

Y2V1 FE 21,425 178 8,940 171,576 100,180

%Succ 100 0 0 96 0

S 38.2 1.0 16.67 31.02 1.0

Y2V2 FE 19,651 181 9,078 171,875 100,138

%Succ 100 6 100 100 85

S 36.42 1.0 17.13 26.2 1.0

Y2V4 FE 18,580 181 9,080 172,092 100,280

%Succ 100 2 100 100 5

S 36.06 1.0 18.6 24.48 1.0

Y2V8 FE 17,061 190 9,511 172,347 100,400

%Succ 0.98453 8 100 100 0

S 35.9 1.0 22.8 18.98 1.0

Y2V16 FE 16,601 194 9,718 172,509 100,360

%Succ 94 4 100 98 0

S 34.76 1.0 17.2 17.56 1.0

Y2V32 FE 15,632 183 9,159 172,787 100,380

%Succ 100 8 100 98 0

S 34.44 1.0 17.4 11.8 1.0

Y2V64 FE 14,906 195 9,789 172,870 100,020

%Succ 96 8 100 96 0

S 33.8 1.0 17.3 11.22 1.0

Y2V128 FE 14,414 181 10,287 173,037 100,200

%Succ 90 6 80 84 0

S 33.22 1.0 18.1 7.46 1.0

GENESISalso presents few success in finding the global solutions. On Y1 defined
in large domainsGENESISdoes not reach the solution with enough precision using
that upper bound in the number of function evaluations. On the remaining test
functionsGENESISonly reaches local solutions.

The performance of the other methods is more interesting. On the two dimen-
sional functions the difference between the methods is in the number of function
evaluations.GAS uses a lot more evaluations than the other two. An interesting
effect is worth mentioning:UEGO is much more adaptive in terms of allocating
function evaluations.

The set of functions based on Y1 have simple structure, hereUEGO uses less
evaluations than theMHC. On Y2 UEGO uses more due to the more difficult struc-
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Table 11.Results of the comparison experiments for Y3

Function UEGO SHC MHC GAS GENESIS

Y3V1 FE 30,339 1293 64,668 1,749,299 1,000,140

%Succ 100 16 100 0 0

S 3.5 1.0 38.2 1.0 1.0

Y3V2 FE 228,729 780,302 869,279 1,747,325 1,000,230

%Succ 100 4 100 0 0

S 7.16 1.0 11.24 43.48 1.0

Y3V4 FE 219,209 920,115 925,807 1,748,291 1,000,740

%Succ 100 4 10 0 0

S 10 1.0 11.20 47.14 1.0

Y3V8 FE 168,138 880,153 98,1471 1,748,962 1,000,640

%Succ 100 6 0 0 0

S 12.44 1.0 11.48 47.14 1.0

Y3V16 FE 121,885 980,024 1,000,050 1,748,729 1,000,720

%Succ 100 2 0 0 0

S 13.24 1.0 11.86 49.02 1.0

Y3V32 FE 110,809 980,030 1,000,050 1,749,003 1,000,400

%Succ 100 0 0 0 0

S 12.52 1.0 11.14 50.0 1.0

Y3V64 FE 105,950 980,030 1,000,050 1,749,287 1,000,760

%Succ 94 0 0 0 0

S 13.08 1.0 12.34 11.4 1.0

Y3V128 FE 109,765 980,027 1,000,050 1,746,830 1,000,108

%Succ 94 0 0 0 0

S 13.72 1.0 12.56 31.6 1.0

ture. In higher dimensions where the hillclimber in itself is much less effective
the differences between the metaheuristics are more evident. The quality of the
solutions ofUEGO is slightly better than the solutions ofGAS and much better
thanMHC, especially when the problems become harder (when the volume of the
domain increases).UEGO finds the global optimum in significantly more runs than
the other algorithms.

At the same time, due to the species creation mechanism and the evaluation
allocation method to existing species (if there are few species, the total amount of
evaluations will be small) the number of evaluations is significantly fewer inUEGO

than in the other two algorithms.
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Table 12.Results of the comparison experiments for Y4

Function UEGO SHC MHC GAS GENESIS

Y4V1 FE 38,123 1263 63,155 1,747,766 1,000,780

%Succ 20 0 0 6 0

S 11.42 1 36.0 33.34 1.0

Y4V2 FE 30,433 580,599 534,043 1,747,503 1,000,460

%Succ 28 0 1 4 0

S 6.76 1.0 36.2 24.46 1.0

Y4V4 FE 25,881 780,294 776,851 1,747,855 1,000,600

%Succ 14 0 0 4 0

S 3.88 1.0 28.4 26.5 1.0

Y4V8 FE 22,925 900,139 88,8140 1,747,984 1,000,040

%Succ 8 0 0 4 0

S 2.0 1.0 11.6 21.56 1.0

Y4V16 FE 22,170 940,084 944,072 1,747,218 1,000,760

%Succ 4 2 0 4 0

S 1.44 1.0 11.64 24.5 1.0

Y4V32 FE 21,584 960,054 981,548 1,747,955 1,000,860

%Succ 6 0 0 0 0

S 1.04 1.0 11.82 20.6 1.0

Y4V64 FE 21,567 980,026 944,093 1,747,590 1,000,720

%Succ 4 0 0 0 0

S 1.08 1.0 12.2 25.5 1.0

Y4V128 FE 21,445 980,028 1,000,050 1,748,079 1,000,420

%Succ 4 0 0 0 0

S 1.0 1.0 12.4 12.5 1.0

6. TestingUEGO with a Set of Known Test Functions

Having the reliability of the algorithm tested, the next set of experiments was
aimed to prove that a robust parameter setting ofUEGO deduced from previous
experiments can be used on other known test functions. To this end, a set of 48 test
functions (see Appendix) was chosen; the parameter setting was:N = 100,000,
M = 20, l = 10 y rl = 0.03. The functions identified only by their names can be
found in Törn and Žilinskas (1989), Dixon and Szego (1975) and Walster et al.
(1985)

All experiments were run 100 times and results in Table 13 shows average val-
ues in the number of function evaluations (FE) and average values in the number
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Table 13. Results for a set of test functions.UEGO parameters:N = 100,000,M = 20, l = 10 y
rl = 0.03

Function FE S Function FE S

F1 9,168 18.8 F22 5,490 1.0

F2 13,028 8.4 F23 5,338 1.0

F3 5,631 1.0 F24 33,474 8.7

F4 12,733 3.0 F26 46,958 5.2

F5 49,841 2.0 F27 5,418 1.0

F6 12,037 8.0 F28 42,030 3.0

F7 11,444 17.1 F29 18,184 17.2

F8 5,475 1.0 F30 5,418 1.0

F9 13,642 4.0 F31 6,968 4.0

F10 6,295 2.0 F32 27,513 16.4

F11 5,475 1.0 F36 8,946 19.0

F12 22,608 2.0 F37 6,007 1.0

F13 25,510 3.0 F39 28,953 8.7

F14 11,137 4.8 F40_5 7,149 19.0

F15 9,757 2.7 F40_7 7,024 19.0

F16 10,018 18.4 F40_9 7,046 19.0

F17 23,315 18.0 F42_2 15,726 14.4

F18 39,571 14.8 F42_3 14,761 18.8

F19 5,428 1.0 F42_4 13,883 18.6

F20 20,590 4.0 F44 67,661 19.0

of detected species (S). Table 13 only gives results for the 40 test functions for
which 100% of success in finding the global maximum was reached. It can be
seen that the number of function evaluations depends on the complexity of the
test functions. Recall that the parameter N is only an upper bound, and the actual
number of function evaluations depends on the structure of the function. If it is
simple, few evaluations will be used. Functions F40 and F42 have been built for
several dimensions, i.e. function F40_5 is F40 function defined in a 5-dimensional
space.

The rest of test functions did not reach the location of the global optimum with
enough precision, so a more robust parameter setting was chosen, where the values
of M andN were increased:M = 100,N = 1,000,000. For this stage of new
experiments a 100% of success was reached for the whole set of test functions.
Table 14 shows the number of optima of the test function (K ), the average number
of function evaluations (FE) and the average number of found species (S) for every
test function. The average number of detected optima (S) is quite close to either the
number of optima (K) or the maximum species number allowed (M). Additionally,
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Table 14. Results for a set of hard test functions.UEGOparameters:N=1,000,000,M=100,l=10 and
rl=0.03

Function Performance Function Performance

Index K FE S Index K FE S

F21 > 100 115,507 98.5 F35 10 141,662 9.7

F25 > 1000 143,622 95.4 F38 1 103,117 1.0

F33 5 126,441 4.9 F41 1 102,861 1.0

F34 7 131,722 6.9 F43 > 200 598,765 98.8

the average number of function evaluations (FE) depends not only on the number
of optima but also in the kind of test function (i.e. the number of dimensions).

7. Concluding Remarks

In this paper,UEGOa general evolutionary algorithm has been investigated. Using a
set of four training functions, the behavior of the algorithm has been analyzed and
the set of robust parameter setting was found. The reliability ofUEGO has been
tested using the method proposed by Csendes, and the obtained results showed that
UEGO is able to find accurate solutions for hard test problems. Comparisons to
other methods have been carried out, and results show thatUEGO presents a better
global performance than the compared algorithms. The evaluation ofUEGO over a
set of forty-eight standard test functions has confirmed that it can be successfully
used as a global optimization algorithm for finding the global optimum and many
local optima for multimodal functions.

Appendix

Table 15. Test Function Description.F : Index of test function.D: Search space.f (x∗): Global
maximum value.K : Number of optima

F Functionf (x) D f (x∗) K

F1 sin(x) [−5, 5] 1.00 2

F2 3 | x − bxc − 0.5 | +x sin(x) [−5, 5] 2π 7

F3 −24x4 + 142x3 − 303x2 + 276x− 93 [−5, 5] −0.0064 1

F4 − sinx − sin 10x
3 − ln x + 0.84x [2.7,7.5] 4.601308 3

F5 −(x + sinx) · e−x2 [−10,10] 0.824239 1

F6
∑10
i=1

1
(ki ·(x−ai))2+ci [0,10] 14.59266 8

F7
∑5
i=1 i · sin((i + 1)x + i) [−10,10] 12.03125 20

F8 −(1+ g(x2)− g(x2+ 2xy + 2y)) [0,10] −1.00 1



288 PILAR M. ORTIGOSA ET AL.

Table 15.Continued

F Functionf (x) D f (x∗) K

F9 x · sin(x) [−10,10] 7.916727 2

F10 x2 · (15+ x2 · (−27− 250x2))− 1 [−10,10] 0.000944 4

F11 −x2 [0,1] 0.0 1

F12

{
(x1− 5)2 − (x2 − 10)2 if x1 6 10

(x1− 15)2 − (x2− 10)2 otherwise
[0, 20]2 0.0 1

F13
−
(

5
π x1− 5.1

4π2 x
2
1 + x2 − 6

)2+
−10 ·

(
1− 1

8π

)
· cosx1 − 10

[−5, 10]2 9.602113 > 3

F14 − Six hump camel back [−2.5,2.5]2 1.0316 6

F15 − Three hump camel back [−5,5]2 0.0 3

F16 − Levy 3 [−10,10]2 176.542 > 100

F17 − Levy 13 [−10,10]2 0.0 > 10

F18 − Beale [−5,5]2 0.0 > 3

F19 − Booth [−5,5]2 0.0 1

F20 − Goldstein / Price [−2,2]2 3.0 3

F21 − Griewank [−600,600]2 0.0 > 10

F22 x1 + x2 [−2,2]2 4.0 1

F23 − Matyas [−10,10]2 0.0 1

F24 − Ratz [−3,3]2 0.106891 3

F25 − Levy 5 [−10,10]2 176.138 > 1000

F26 − Rosenbrock [−2,8]2 0.0 1

F27
−((1− x1)

3 · (x2
1 + 1)+ (x1 − x2

2)
2+

+(x1 − 1)2+ (x1 − x2
3)

2+ (x3 − 1)2)
[−10,10]2 0.0 1

F28 − Hartman 3 [0,1]3 3.86278 4

F29 − Levy 8 [−10,10]3 0.0 > 1000

F30 − Schwefel1 [−10,10]3 0.0 > 10

F31 − Schwefel1 [−1.89,1.89]3 0.0 > 10

F32 Box 3D [−10,30]3 0.0 14

F33 − Shekel 5 [−10,10]4 10.15320 5

F34 − Shekel 7 [−10,10]4 10.40294 7

F35 − Shekel 10 [−10,10]4 10.53641 10

F36 − Levy 9 [−10,10]4 0.0 > 100

F37 − Levy 15 [−10,10]4 0.0 1

F38 − Powell [−4,5]4 0.0 1

F39 − Hartman 6 [0,1]6 3.322828 4

F40 − Ratz 6 [0, 1]n 0.0 ∞
F41 − Schwefel [−1.89,1.89]30 0.0 1

F42 − Zabinsky_90 [0.0, π]n 3.5 > 100

F43 0.5 ·∑n
i=1 (xi − 2)2 [−1, 1]20 90.0 > 200

F44 0.5 · i ·∑n
i=1 (xi − 2)2 [−1, 1]20 < 4105 > 200
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